My ICASSP 2013 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

SPTM-P5: Sparse Modelling and Compressed Sensing

Session Type: Poster
Time: Wednesday, May 29, 08:00 - 10:00
Location: Poster Area I
Session Chair: P.P Vaidyanathan, CALTECH
 
  SPTM-P5.1: DICTIONARY LEARNING FOR SPARSE DECOMPOSITION: A NEW CRITERION AND ALGORITHM
         Zahra Sadeghipoor; Sharif University of Technology
         Massoud Babaie-Zadeh; Sharif University of Technology
         Christian Jutten; Institut Universitaire de France
 
  SPTM-P5.2: FUSION OF ALGORITHMS FOR COMPRESSED SENSING
         Sooraj K. Ambat; Indian Institute of Science
         Saikat Chatterjee; KTH Royal Institute of Technology
         K.V.S. Hari; Indian Institute of Science
 
  SPTM-P5.3: WEIGHTED-DAMPED APPROXIMATE MESSAGE PASSING FOR COMPRESSED SENSING
         Shengchu Wang; Tsinghua University
         Yunzhou Li; Tsinghua University
         Zhen Gao; Tsinghua University
         Jing Wang; Tsinghua University
 
  SPTM-P5.4: A MIXED INTEGER LINEAR PROGRAMMING FORMULATION FOR THE SPARSE RECOVERY PROBLEM IN COMPRESSED SENSING
         N. Burak Karahanoğlu; TÜBİTAK-BİLGEM
         Hakan Erdoğan; Sabancı University
         Ş. İlker Birbil; Sabancı University
 
  SPTM-P5.5: FROM LEAST SQUARES TO SPARSE: A NON-CONVEX APPROACH WITH GUARANTEE
         Laming Chen; Tsinghua University
         Yuantao Gu; Tsinghua University
 
  SPTM-P5.6: CORRELATION-AWARE SPARSE SUPPORT RECOVERY: GAUSSIAN SOURCES
         Piya Pal; California Institute of Technology
         P. P. Vaidyanathan; California Institute of Technology
 
  SPTM-P5.7: A GREEDY FORWARD-BACKWARD ALGORITHM FOR ATOMIC NORM CONSTRAINED MINIMIZATION
         Nikhil Rao; University of Wisconsin
         Parikshit Shah; University of Wisconsin
         Stephen Wright; University of Wisconsin
         Robert Nowak; University of Wisconsin
 
  SPTM-P5.8: ON FINITE ALPHABET COMPRESSIVE SENSING
         Abhik Das; The University of Texas at Austin
         Sriram Vishwanath; The University of Texas at Austin
 
  SPTM-P5.9: OPTIMAL DETERMINISTIC COMPRESSED SENSING MATRICES
         Arash Saber Tehrani; University of Southern California
         Alexandros Dimakis; University of Southern California
         Giuseppe Caire; University of Southern California
 
  SPTM-P5.10: JOINT RECOVERY OF SPARSE SIGNALS AND PARAMETER PERTURBATIONS WITH PARAMETERIZED MEASUREMENT MODELS
         Erik Johnson; University of Illinois
         Douglas Jones; University of Illinois
 
  SPTM-P5.11: SEPARATING SPARSE AND LOW-DIMENSIONAL SIGNAL SEQUENCES FROM TIME-VARYING UNDERSAMPLED PROJECTIONS OF THEIR SUMS
         Jinchun Zhan; Iowa State University
         Namrata Vaswani; Iowa State University
         Ian Atkinson; University of Illinois at Chicago
 
  SPTM-P5.12: REVERSE ENGINEERING OF SIGNAL ACQUISITION CHAINS USING THE THEORY OF SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION
         Thirapiroon Thongkamwitoon; Imperial College London
         Hani Muammar; Imperial College London
         Pier Luigi Dragotti; Imperial College London
 
  SPTM-P5.13: A ONE-BIT REWEIGHTED ITERATIVE ALGORITHM FOR SPARSE SIGNAL RECOVERY
         Yanning Shen; University of Electronic Science and Technology of China
         Jun Fang; University of Electronic Science and Technology of China
         Hongbin Li; Stevens Institute of Technology
         Zhi Chen; University of Electronic Science and Technology of China
 
  SPTM-P5.14: BEAMFORMERS FOR SPARSE RECOVERY
         Martin Sundin; KTH Royal Institute of Technology
         Dennis Sundman; KTH Royal Institute of Technology
         Magnus Jansson; KTH Royal Institute of Technology