Technical Program

SP-P11: Acoustic Modeling: Novel Methods for Automatic Speech Recognition

Session Type: Poster
Time: Wednesday, May 29, 15:20 - 17:20
Location: Poster Area D
Session Chair: Hermann Ney, RWTH-Aachen
 
SP-P11.1: MULTIFRAME DEEP NEURAL NETWORKS FOR ACOUSTIC MODELING
         Vincent Vanhoucke; Google Inc.
         Matthieu Devin; Google Inc.
         Georg Heigold; Google Inc.
 
SP-P11.2: INVESTIGATION OF TANDEM DEEP BELIEF NETWORK APPROACH FOR PHONEME RECOGNITION
         Xin Zheng; Tsinghua University
         Zhiyong Wu; Tsinghua University
         Binbin Shen; Tsinghua University
         Helen Meng; The Chinese University of Hong Kong
         Lianhong Cai; Tsinghua University
 
SP-P11.3: USING MULTIPLE VERSIONS OF SPEECH INPUT IN PHONE RECOGNITION
         Mark Liberman; University of Pennsylvania
         Jiahong Yuan; University of Pennsylvania
         Andreas Stolcke; Microsoft Research
         Wen Wang; SRI International
         Vikramjit Mitra; SRI International
 
SP-P11.4: AUDIO-VISUAL DEEP LEARNING FOR NOISE ROBUST SPEECH RECOGNITION
         Jing Huang; IBM
         Brian Kingsbury; IBM
 
SP-P11.5: INVESTIGATION OF DEEP BOLTZMANN MACHINES FOR PHONE RECOGNITION
         Zhao You; Institute of Automation, Chinese Academy of Sciences
         Xiaorui Wang; Institute of Automation, Chinese Academy of Sciences
         Bo Xu; Institute of Automation, Chinese Academy of Sciences
 
SP-P11.6: FEATURE AND SCORE LEVEL COMBINATION OF SUBSPACE GAUSSINAS IN LVCSR TASK
         Petr Motlicek; Idiap Research Institute
         Daniel Povey; Johns Hopkins University
         Martin Karafiat; Brno University of Technology
 
SP-P11.7: UPPER AND LOWER BOUNDS FOR APPROXIMATION OF THE KULLBACK-LEIBLER DIVERGENCE BETWEEN HIDDEN MARKOV MODELS
         Haiyang Li; Harbin Institute of Technology
         Jiqing Han; Harbin Institute of Technology
         Tieran Zheng; Harbin Institute of Technology
         Guibin Zheng; Harbin Institute of Technology
 
SP-P11.8: UNDERSTANDING THE DROPOUT STRATEGY AND ANALYZING ITS EFFECTIVENESS ON LVCSR
         Jie Li; Institute of Automation, Chinese Academy of Sciences
         Xiaorui Wang; Institute of Automation, Chinese Academy of Sciences
         Bo Xu; Institute of Automation, Chinese Academy of Sciences
 
SP-P11.9: EFFICIENT DECODING WITH GENERATIVE SCORE-SPACES USING THE EXPECTATION SEMIRING
         Rogier van Dalen; University of Cambridge
         Anton Ragni; University of Cambridge
         Mark J.F. Gales; University of Cambridge
 
SP-P11.10: IDENTIFICATION AND MODELING OF WORD FRAGMENTS IN SPONTANEOUS SPEECH
         Yulia Tsvetkov; Carnegie Mellon University
         Zaid Sheikh; Carnegie Mellon University
         Florian Metze; Carnegie Mellon University
 
SP-P11.11: LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION BASED ON WFST STRUCTURED CLASSIFIERS AND DEEP BOTTLENECK FEATURES
         Yotaro Kubo; Nippon Telegraph and Telephone Corporation
         Takaaki Hori; Nippon Telegraph and Telephone Corporation
         Atsushi Nakamura; Nippon Telegraph and Telephone Corporation
 
SP-P11.12: DEEP NEURAL NETWORKS WITH AUXILIARY GAUSSIAN MIXTURE MODELS FOR REAL-TIME SPEECH RECOGNITION
         Xin Lei; Google Inc.
         Hui Lin; Google Inc.
         Georg Heigold; Google Inc.