Technical Program

SP-P1: Acoustic Modeling: Discriminative methods

Session Type: Poster
Time: Tuesday, May 28, 10:50 - 12:50
Location: Poster Area D
Session Chair: Gernot Kubin, Graz University of Technology
 
SP-P1.1: EFFECTIVENESS OF DISCRIMINATIVE TRAINING AND FEATURE TRANSFORMATION FOR REVERBERATED AND NOISY SPEECH
         Yuuki Tachioka; Mitsubishi Electric
         Shinji Watanabe; Mitsubishi Electric Research Laboratories (MERL)
         John R. Hershey; Mitsubishi Electric Research Laboratories (MERL)
 
SP-P1.2: TIED-STATE BASED DISCRIMINATIVE TRAINING OF CONTEXT-EXPANDED REGION-DEPENDENT FEATURE TRANSFORMS FOR LVCSR
         Zhi-Jie Yan; Microsoft Research Asia
         Qiang Huo; Microsoft Research Asia
         Jian Xu; Microsoft Research Asia
         Yu Zhang; Microsoft Research Asia
 
SP-P1.3: STATE OF THE ART DISCRIMINATIVE TRAINING OF SUBSPACE CONSTRAINED GAUSSIAN MIXTURE MODELS IN BIG TRAINING CORPORA
         Jing Huang; IBM
         Peder Olsen; IBM
         Vaibhava Goel; IBM
 
SP-P1.4: KERNELIZED LOG LINEAR MODELS FOR CONTINUOUS SPEECH RECOGNITION
         Shi-Xiong Zhang; Cambridge University
         Mark J.F. Gales; Cambridge University
 
SP-P1.5: A CRITICAL EVALUATION OF STOCHASTIC ALGORITHMS FOR CONVEX OPTIMIZATION
         Simon Wiesler; RWTH Aachen University
         Alexander Richard; RWTH Aachen University
         Ralf Schlüter; RWTH Aachen University
         Hermann Ney; RWTH Aachen University
 
SP-P1.6: ADAPTIVE BOOSTED NON-UNIFORM MCE FOR KEYWORD SPOTTING ON SPONTANEOUS SPEECH
         Chao Weng; Georgia Institute of Technology
         Biing-Hwang (Fred) Juang; Georgia Institute of Technology
 
SP-P1.7: MULTI-TASK LEARNING IN DEEP NEURAL NETWORKS FOR IMPROVED PHONEME RECOGNITION
         Michael Seltzer; Microsoft Corporation
         Jasha Droppo; Microsoft Corporation
 
SP-P1.8: DEEP HIERARCHICAL BOTTLENECK MRASTA FEATURES FOR LVCSR
         Zoltán Tüske; RWTH Aachen University
         Ralf Schlüter; RWTH Aachen University
         Hermann Ney; RWTH Aachen University
 
SP-P1.9: MULTI-LEVEL ADAPTIVE NETWORKS IN TANDEM AND HYBRID ASR SYSTEMS
         Peter Bell; University of Edinburgh
         Pawel Swietojanski; University of Edinburgh
         Steve Renals; University of Edinburgh
 
SP-P1.10: INCOHERENT TRAINING OF DEEP NEURAL NETWORKS TO DE-CORRELATE BOTTLENECK FEATURES FOR SPEECH RECOGNITION
         Yebo Bao; University of Science and Technology of China
         Hui Jiang; York University
         Li-Rong Dai; University of Science and Technology of China
         Cong Liu; Anhui USTC iFLYTEK Corporation Limited
 
SP-P1.11: PHONE RECOGNITION WITH DEEP SPARSE RECTIFIER NEURAL NETWORKS
         Laszlo Toth; Research Group on Artificial Intelligence
 
SP-P1.12: WARPED MINIMUM VARIANCE DISTORTIONLESS RESPONSE BASED BOTTLE NECK FEATURES FOR LVCSR
         Kevin Kilgour; Karlsruhe Institute of Technology (KIT)
         Igor Tseyzer; Karlsruhe Institute of Technology (KIT)
         Quoc Bao Nguyen; Karlsruhe Institute of Technology (KIT)
         Alex Waibel; Karlsruhe Institute of Technology (KIT)
 
SP-P1.13: EFFICIENT MANIFOLD LEARNING FOR SPEECH RECOGNITION USING LOCALITY SENSITIVE HASHING
         Vikrant Tomar; McGill University
         Richard Rose; McGill University
 
SP-P1.14: TYING ROTATIONS OF COVARIANCE MATRICES VIA RIEMANNIAN SUBSPACE CLUSTERING
         Yusuke Shinohara; Toshiba Corporation